RV Investigator… now that’s what you call a tight ship!

By Angela Russell, University of Adelaide

To conduct the science needed to unravel the mysteries of the ocean and its influence on ecology and climate, you need to take operations up a notch. Some may think it’s simply a matter of dangling a few instruments over the side of a boat but let me tell you…RV Investigator is no ordinary boat!

In this photo, RV Investigator steams across the ocean.  RV Investigator is a 93.9m long, 18.8m wide ship, powered by three diesel engines and two electric propulsion motors (Figure 1). Purpose built for CSIRO, the RV Investigator puts Australia at the forefront of ocean research globally, conducting oceanography, geoscience, atmospheric and marine science, from the Antarctic ice edge to the tropics.
Figure 1: RV Investigator at full steam (Photo Credit: C. Minness)

RV Investigator is a 93.9m long, 18.8m wide ship, powered by three diesel engines and two electric propulsion motors (Figure 1). Purpose built for CSIRO, RV Investigator puts Australia at the forefront of ocean research globally, conducting oceanography, geoscience, atmospheric and marine science, from the Antarctic ice edge to the tropics. Along with a phenomenal team of engineers, navigational crew (Figure 2), technical crew and IT professionals, the ship’s impressive technical capabilities allow us to enhance our investigations to an advanced level.

The navigational control deck faces a long panel of windows in the bridge of RV Investigator.  Part of the at-sea training on board RV Investigator for CAPSTAN's 2019 voyage included a bridge tour.
Figure 2: The navigational control deck within the ship’s bridge. (Photo Credit: Angela Russell)

The vessel is like a mesocosm of the world! It accommodates 40 scientists and support staff, and twenty crew. RV Investigator generates around nine megawatts of power, enough electricity to power a small suburb! It even completely biodegrades all sewerage onboard, so as not to contaminate the samples. Obviously, there is no room for error here, so engineers work around the clock to maintain the workings of the ship, keeping replacements for every part of the machinery. Engineers are also equipped with a workshop to repair engine parts or scientific units on the fly.

Colored bathymetric map of the Discovery Bay Canyon off of Portland Victoria with deeper water indicated by purples and blues and shallower waters in reds and yellows. The Discovery Bay Canyon has a Y shape and was the study area for the 2019 CAPSTAN voyage.
Figure 3: Bathymetric map of the Discovery Bay Canyon (Photo Credit: J. Daniell)

A brief overview of RV Investigators ‘kit’ includes advanced sonar technology which emits acoustic signals in a 30 km wide beam in water depths to 11.5 km to reveal, in 3D, seafloor features such as deep-sea canyons and mountains. We used this swath data and ArcMap (GIS) software to create a high-resolution bathymetry map of a previously unmapped, deep sea canyon we traversed (Figure 3). A drop keel underneath the ship (Figure 4) can be raised or lowered into the water column. This allows water samples to be recovered without interference from the ship.

A view down to the top of the drop keel meters below from RV Investigator.  In this photo the drop keel has been lowered to be even with the ship's gondola (not pictured).  A tour of the ship, including normally restricted areas such as that around the drop keel, was part of the student experience during their at sea marine science training on CAPSTAN's 2019 voyage.
Figure 4: The drop keel lowered to the water’s surface (Photo Credit: Angela Russell)

The ship is specifically designed to an international maritime classification called DNVSilent-R. This means RV Investigator is one of the quietest vessels in the world. Radiated ship noise interferes with acoustic signals, so by building a quiet ship, the performance of the equipment used to monitor the marine ecosystem, and map the seafloor is maximised. Roll stabilization also improves our use of scientific instruments, such as microscopes and balances, which can be tricky on a moving ship.

CAPSTAN 2019 Chief Scientist and support staff describe the sediment grab sampler on deck while RV Investigator transits to the first station for sampling. On the work deck, all personnel must wear hard hats and steel capped boots.
Figure 5: Chief Scientist Leah Moore discussing the deployment of the Smith MacIntyre sediment grab sampler with the technical support and science team. Photo Credit: Angela Russell

The logistics behind the location of sample sites and each sample collection is a strategic masterpiece and one aspect of our mission I was particularly in awe of. The Chief Scientist works in close collaboration with the Technical Operations Team, Integrated Ratings Crew and Master of the ship, to design each procedure in a way that ensures the safety of the crew and their scientific instruments, to meet the research objectives and to optimise sample quality. It really is a symbiotic relationship, in that each is part of the team that is integral to the other (Figures 5,6,8).

RV Investigator crew and support team deploy the CTD (conductivity, temperature, depth) rosette surrounded by niskin bottles over the starboard side of the ship.  Students were involved in monitoring the live readouts of the data to give depths to the winch operators and to fire the bottles as part of their at sea marine science training on board the 2019 CAPSTAN voyage.
Figure 6: Deployment of the CTD (conductivity, temperature, depth) rosette. Photo Credit: Angela Russell

One of my highlights of the voyage was in the operational room on the internal communication system during deployment of the CTD unit (Figure 7). It was my job to request the CTD stops required to collect water samples remotely at different depths, up to the Integrated Ratings crew (IR crew) located in the ‘Cat House’. This area is where the winch and boom are managed, and where all the ships cameras are simultaneously viewed. This gives IR crew the ability to visualise the CTD going over the side, while viewing the winches below deck as it descends. Once the unit was in position at its lowest depth (it went down to 4500m), I fired the closing of each of the 24 sample bottles on the return journey with a single mouse click.

CAPSTAN student Angela oversees a CTD deployment from the operations room on board RV Investigator as part of the hands on marine science training.  She monitors live readings transmitted from the rosette and plotted on the computer screen to determine depths for discrete sampling with the niskin bottles and communicates the next depth to winch operators.  Once the rosette reaches a desired depth, she can fire each bottle with the click of a button.
Figure 7: Firing 4500 m deep niskin bottles on the CTD rosette from the operations room (Photo Credit: April Abbott)

As students of the CAPSTAN voyage, we are spoilt with the level of expertise and state-of-the-art technology provided to us. It’s been a once in a lifetime experience that I will be forever grateful for.

RV Investigator crew and technical support staff secure the kasten core to the stern deck following a successful deployment.  4 kasten cores were collected as part of the hands on marine science training on the 2019 CAPSTAN voyage.
Figure 8: Crew and support staff secure the Kasten sediment corer after recovery using the hydraulic A-frame rig (Photo Credit: Angela Russell)
Advertisements

2 thoughts on “RV Investigator… now that’s what you call a tight ship!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s